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1 Introduction

The hedonic valuation approach to estimating the economic benefits of non-market ameni-

ties such as environmental quality frequently relies on the housing market to infer the

implicit price function of the amenity (Harrison and Rubinfeld, 1978; Smith and Huang,

1995; Chay and Greenstone, 2005; Bayer et al., 2009; Bento et al., 2015; Currie et al., 2015).

In a partial equilibrium setting in which the quantity of housing is fixed, the respon-

siveness of housing prices to outward demand shifts induced by amenity improvements

offers an appropriate estimate of the marginal benefits of the improvement. Indeed, im-

plicit in many empirical applications of the canonical hedonic valuation model is the as-

sumption that marginal willingness to pay (MWTP) for an amenity is fully capitalized

into prices, or that supply is perfectly inelastic. However, in general equilibrium settings

in which supply is elastic, the housing market may expand to accommodate increased

demand (the ‘quantity’ effect). In this case, the capitalization of the amenity into housing

prices (the ‘price’ effect) will be attenuated, and the standard hedonic price parameter will

no longer serve as a sufficient statistic for MWTP. Rather, it will provide an underestimate

of the true parameter.

Consider Los Angeles, California, with relatively inelastic housing supply, and At-

lanta, Georgia, with relatively elastic housing supply. Both experienced large improve-

ments in air quality over the 2000–2010 decade following the implementation of the Clean

Air Act’s (CAA) PM2.5 National Ambient Air Quality Standards (NAAQS). Over this

decade, PM2.5 concentrations fell by 31 percent in Los Angeles and by 26 percent in At-

lanta. Over this same period, Los Angeles experienced a 72 percent increase in housing

prices in real terms and a 3 percent increase in its total population. Meanwhile, Atlanta

experienced only a 5 percent increase in housing prices in real terms and a 24 percent in-

crease in its total population. What role did local housing supply constraints play in me-

diating the relationship between local amenity shifts and price changes, and what does
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this imply for subsequent estimates of the benefits of air quality improvements? How can

researchers estimate MWTP for amenity shifts in elastic-supply settings?

In this paper, we present evidence that plausibly exogenous improvements in air

quality induced by the CAA yield larger price effects in inelastic-supply markets and

larger quantity effects in elastic-supply markets, and we detail a novel method to incor-

porate supply elasticities into the hedonic framework. To isolate the causal relationship

between air quality and local prices and population sizes, we exploit the introduction of

the CAA’s 1997 PM2.5 NAAQS, which went into effect in 2005.1 Following the implemen-

tation of these standards, areas designated as ‘nonattainment’ were legally required to

reduce PM2.5 concentrations, while ‘attainment’ areas, with PM2.5 concentrations below

the regulatory ceiling, were not. We exploit differential pollution reductions induced by

these regulations and heterogeneous supply elasticities across cities and neighborhoods

to examine how supply constraints mediate both price and quantity effects.

Instrumenting for Census-tract-level changes in average PM2.5 concentrations with

area nonattainment status, we find that a 1-unit decline in average PM2.5 concentrations

induced by the CAA NAAQS yields about a 5.8 percent increase in local housing prices, as

measured by the tract-level housing price index (HPI). This is equivalent to an increase of

about $6,570 per home in 2000 dollars. Grouping Census tracts into eight bins of housing

supply elasticity based on the estimates from Saiz (2010), we find that air quality improve-

ments yield much larger housing price increases in the most inelastic-supply markets (an

8.7 percent increase) compared to the most elastic-supply markets (a statistically insignif-

icant 2.5 percent decrease). In contrast, the largest quantity effects are observed in the

most elastic-supply Census tracts. The same regulation-induced decline in PM2.5 yields

a 5.7 percent increase in population counts in the most elastic-supply housing markets,

compared to a statistically insignificant 0.3 percent decrease in the most inelastic-supply

1Other research exploiting the introduction of new NAAQS regulations to understand their effects on
air pollution concentrations, differential pollution exposure, and other outcomes include Bento et al. (2015);
Jha et al. (2019); Sager and Singer (2022); Currie et al. (2023).
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housing markets. Using neighborhood-level elasticity parameters from Baum-Snow and

Han (2024) and examining within-labor market variation in price and quantity effects

yields similar conclusions.

Our reduced-form evidence is consistent with the economic intuition that housing

supply constraints mediate the relationship between demand shocks and housing prices.

This indicates that price changes will not fully capitalize the benefits of amenity improve-

ments in situations when quantities are not explicitly fixed. Motivated by this insight, we

develop a simple Rosen-Roback-style model of spatial equilibrium (Rosen, 1979; Roback,

1982) that provides expressions for local housing prices and population sizes as func-

tions of local levels of air pollution. The model enables us to interpret the coefficients

from a standard hedonic regression in the presence of both price and quantity responses

to changes in local amenities. Specifically, the model implies that when supply is per-

fectly inelastic, the standard hedonic price coefficient is a sufficient statistic for MWTP.

However, in the presence of quantity margins (i.e., when supply is elastic), the coefficient

from a standard hedonic model is the MWTP for the amenity improvement, attenuated

in proportion to the elasticity of housing supply. Guided by the parameters in the model,

we provide new estimates of MWTP that incorporate the local housing supply elasticity

measured at both the metropolitan statistical area (MSA)- (Saiz, 2010) and the Census-

tract level (Baum-Snow and Han, 2024). This approach produces MWTP estimates of

about $7,360 to $14,384 per unit of pollution reduction (per household), which is on the

order of 12 to 117 percent larger than the estimate produced by the standard hedonic ap-

proach ($6,570 per household). Therefore, incorporating supply elasticities into the hedo-

nic regression framework substantially increases the estimated benefits of environmental

improvements in elastic-supply settings.

This paper makes two important contributions to the literature. First, we build on

the canonical work of Chay and Greenstone (2005) – Does Air Quality Matter? Evidence

from the Housing Market – and subsequent literature exploiting the CAA regulatory struc-
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ture to study air pollution (Grainger, 2012; Bento et al., 2015; Jha et al., 2019; Sanders et al.,

2020; Sager and Singer, 2022; Bishop et al., 2023; Currie et al., 2023), by providing quasi-

experimental evidence that housing supply constraints influence how well housing prices

capitalize local air quality improvements. Areas in which supply is more inelastic, due

to regulatory constraints or geographic barriers to construction, experience the strongest

price effects of regulation-induced pollution improvements. This is consistent with re-

cent advances in the urban economics literature showing that housing supply constraints

shape price effects and sorting behavior (Katz and Rosen, 1987; Glaeser and Gyourko,

2003, 2005, 2018; Glaeser et al., 2005; Gyourko et al., 2008; Glaeser and Ward, 2009; Saiz,

2010; Kahn et al., 2010; Gyourko and Molloy, 2015; Ganong and Shoag, 2017; Baum-Snow

et al., 2018; Hsieh and Moretti, 2019; Baum-Snow, 2023). Our reduced-form evidence in-

dicates that places with relatively elastic housing markets may accommodate demand

shifts via increases in housing supply, which may attenuate the price effects of such de-

mand shifts. This implies that the elasticity of the market in question (typically housing)

should be considered when estimating the MWTP for amenity improvements.

Second, we contribute to the extensive empirical and theoretical literature on he-

donic valuation by adapting the framework to account for variation in housing supply

elasticities. Many studies exploit the price capitalization of environmental improvements

to infer the marginal benefits of these changes (Harrison and Rubinfeld, 1978; Smith and

Huang, 1995; Chay and Greenstone, 2005; Bayer et al., 2009; Currie et al., 2015; Bento et

al., 2015; Keiser and Shapiro, 2019; Sager and Singer, 2022), but implicit in this approach

is the assumption that supply is perfectly inelastic. This assumption likely fails in gen-

eral equilibrium settings when markets can expand to accommodate demand shifts. Prior

work has raised other general equilibrium concerns, such as shifts in price functions over

time and the impact of endogenous sorting on non-treated areas (e.g., Sieg et al., 2004;

Kuminoff and Pope, 2014; Banzhaf, 2021).2 Our paper advances this tradition by exam-

2For example, Sieg et al. (2004) provide a structural model demonstrating how individuals re-optimize
in response to large amenity changes and find large differences between partial- and general-equilibrium
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ining a new source of bias and explicitly incorporating a place-specific housing supply

elasticity parameter into the traditional hedonic framework. In doing so, we present new

evidence on how the price capitalization of pollution reduction varies with local housing

supply constraints, and we detail a new method through which researchers can incor-

porate elastic housing supply — and the resulting quantity effect — into the hedonic

valuation approach.

The rest of this paper is organized as follows. Section 2 presents a stylized model

of supply and demand for air quality improvements, demonstrating how demand shifts

yield both price and quantity effects in elastic settings. We describe our data and method-

ological approach to estimating price and quantity effects in Sections 3 and 4, with reduced-

form results detailed in Section 5. Section 6 presents a spatial equilibrium model for air

quality improvements and new estimates of MWTP that incorporate the supply elasticity

parameter. Section 7 concludes.

2 A stylized depiction of the housing market and amenity improvements

We first illustrate how the canonical hedonic model might underestimate the value of

air quality improvements when housing stock can expand to absorb increased demand

by offering a simple graphical depiction. This exposition is similar to that presented in

Baum-Snow (2023). We build on this stylized example using a richer model of spatial

equilibrium in Section 6.

Consider two locations: one with relatively inelastic housing supply, and one with

relatively elastic housing supply. Housing supply might be inelastic because there ex-

ist various geographical barriers to construction, or because local zoning and land use

regulations make construction relatively costly (Quigley and Raphael, 2005; Saiz, 2010;

MWTP estimates in the case of sorting-induced endogenous local attribute changes. More recently, Banzhaf
(2021) builds on Kuminoff and Pope (2014) and others to show that price changes associated with improved
air quality include both amenity demand and changes in the hedonic price function, especially over longer
time horizons. That is, amenity shocks can influence the equilibrium hedonic price function for an entire
housing market (including untreated units), such that there may exist price changes not directly attributable
to local amenity improvements.
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Gyourko and Molloy, 2015). At time t = 0, demand for these locations is given by

D(Amenity0), with price P0 and quantity Q0 in Figure 1.

Now, imagine that demand for these locations shifts outward due to an exogenous

increase in local amenities, such as an improvement in air quality. This improvement

is reflected by the shift from D(Amenity0) to D(Amenity1) in Figure 1a. The inelastic

housing market, relatively constrained in its ability to produce new housing units, will

experience this demand shift predominantly as a price increase, with prices increasing

from P0 to P1,inelastic. The location with more elastic housing supply will respond to this

demand shift by expanding its housing stock to accommodate newcomers, such that the

price effect is relatively attenuated and the quantity effect is relatively large — Q1,elastic

reflects a larger outward shift in housing units than Q1,inelastic. In the extreme example

in which housing supply is perfectly inelastic, the entire effect of the demand shift will

manifest as a price increase, from P0 to P1,inelastic in Figure 1b. This is the setting in which

the typical hedonic method is assumed to take place.

Consider Los Angeles, California, and Atlanta, Georgia. Both cities were in nonat-

tainment areas based on the 1997 PM2.5 NAAQS. Nonattainment status was announced

in December of 2004 and took effect in 2005. Both cities experienced large improvements

in air quality over the 2000 to 2010 period, in part thanks to this designation. Between

2000 and 2010, PM2.5 concentrations fell by 31 percent in Los Angeles and by 26 percent

in Atlanta. Los Angeles has many regulatory and geographic constraints that limit new

residential construction, and thus it has quite inelastic housing supply. Atlanta, on the

other hand, has relatively elastic housing supply.3 Over the 2000–2010 decade, Los An-

geles experienced a 72 percent increase in (real) housing prices and about a 3 percent

increase in its total population. Meanwhile, Atlanta experienced only a 5 percent in-

crease in (real) housing prices and about a 24 percent increase in its total population. Of

course, these price and population trajectories are not solely reflective of the impact of

3In Saiz (2010), the estimated metro-level housing supply elasticity in Los Angeles is 0.63, compared to
2.55 in Atlanta.
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Figure 1: Effect of demand shift in (in)elastic markets

(a)

(b)

Notes: This figure reflects a stylized depiction of supply and demand for two locations: one with inelastic
housing supply (in teal), and one with elastic housing supply (in brown). An amenity improvement is
reflected in the outward shift in demand from D(Amenity0) to D(Amenity1). Panel b is identical to panel
a, but the inelastic housing market has perfectly inelastic housing supply.
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regulation-induced air quality improvements, but the stark contrast across the two places

is consistent with the basic economic logic illustrated in Figure 1.

This is a highly stylized exposition of supply and demand, but it illustrates the

important role that housing supply elasticities play in determining how well amenity

changes are capitalized into housing prices, and thus how well price changes reflect

MWTP. While taste-based sorting may result in different estimates of MWTP across place,

basic economic theory offers an alternative explanation: supply constraints dictate the rel-

ative price and quantity effects of demand shifts. In places with perfectly inelastic supply,

demand shifts will be perfectly capitalized into housing prices. As supply is more elas-

tic, housing stock will expand to accommodate increased demand, attenuating the price

capitalization. Even if individuals are randomly sorted into inelastic and elastic housing

markets such that the WTP for improved air quality is constant across locations (i.e., there

is no self-selection based on preferences for air quality), a hedonic evaluation of the ben-

efits of cleaner air based exclusively on price capitalization will produce larger estimates

in the inelastic housing market compared to the elastic housing market. By neglecting the

demand shift that manifests as an increase in the quantity margin, the evaluation would

underestimate the true MWTP in more elastic housing markets.

3 Data

Our empirical analysis leverages changes in tract-level air pollution, housing prices, and

population counts in over 25,000 metropolitan-area Census tracts over the 2000-2010 pe-

riod. We construct a data set of tract-level characteristics between 2000 and 2010 using

several sources, detailed below.

3.1 Air pollution data

Fine-grain air pollution data have recently been produced for the entire U.S. using a com-

bination of satellite data, pollution monitors, land use characteristics, and chemical air
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transport models. Three of the major data projects offering these satellite-derived pol-

lution estimates include Meng et al. (2019), Di et al. (2016), and van Donkelaar et al.

(2019). We aggregate the gridded air pollution data from van Donkelaar et al. (2019)

to the Census-tract level, although our conclusions are insensitive to using alternative

data sets. Our primary independent variable of interest is the long-difference change in

average annual PM2.5 concentrations in a given Census tract between 2000 and 2010.

3.2 Housing price, population, and demographic data

We combine the air quality data with local housing, population, and demographic data

retrieved from the decennial Census, the American Community Survey (ACS), and the

Federal Housing Finance Agency (FHFA). Our two main outcome variables of interest are

the tract’s housing price index (HPI) in 2010 (where 2000 is the base year of the index) and

the long-difference change in the natural log of the tract’s population between 2000 and

2010. Population counts in 2000 and 2010 are based on the decennial Census, retrieved

from the Social Explorer database.4 The HPI, retrieved from the FHFA, is a weighted,

repeat-sales index capturing movements in prices of single-family homes whose mort-

gages have been purchased or securitized by Fannie Mae or Freddie Mac. It provides

a measure of housing price appreciation in a given tract holding the underlying qual-

ity of housing stock relatively constant. Because Census tract boundaries are modified

(and new tracts defined) periodically to account for population adjustments, we assign

all characteristics to Census tracts using consistent 2010 tract boundaries. Baseline tract-

level covariates are based on estimates from the 2000 Census, retrieved from the Social

Explorer database.

4We consider the change in population counts as our primary measure of quantity adjustments for con-
sistency with the model described in Section 6, rather than the stylized depiction in Section 2. Supply
constraints may promote increased crowding within existing housing units, which could differentially in-
fluence population counts and the number of housing units. Our conclusions are robust to instead consider-
ing the change in housing units as well as the change in population density, following Banzhaf and Walsh
(2008) and Greenstone and Gallagher (2008). They are also robust to transforming the price index into a
variable reflecting differences in logs, as well as transforming the population change to reflect a percent
change.
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3.3 Housing supply restriction and elasticity data

We incorporate various measures of housing supply constraints defined at both the tract-

and metropolitan-area levels. Our primary measure of local housing supply elasticity

is drawn from Saiz (2010), who provides housing supply estimates at the metropolitan-

area level for cities with over 500,000 persons in 2000. These elasticity estimates incor-

porate geographic constraints to development, a determinant of exogenously undevel-

opable land in the area, as well as local land use regulations determined from the 2005

Wharton Regulation Survey.5 We limit our sample to metro-area tracts in the contiguous

United States with non-missing Saiz (2010) elasticity estimates (and non-missing HPI es-

timates), resulting in a sample of 25,843 Census tracts housing over one-third of the U.S.

population. Elasticity estimates range from the most inelastic of 0.6 (Miami, Florida) to

the most elastic of 5.45 (Wichita, Kansas). To elucidate how price capitalization varies

across elasticity, we group tracts into eight equal-sized bins based on their Saiz (2010)

elasticities. Each bin includes about 3,230 Census tracts.

We supplement this metro-level measure with tract-level housing supply elasticity

estimates from Baum-Snow and Han (2024).6 These estimates are identified using labor

demand shocks in commuting destinations from residential locations. Tract-level housing

supply elasticities vary based on the tract’s distance to the central business district, land

availability, topographical features, and land use regulations. These tract-level elasticities

are primarily meant for comparison within metro areas rather than across. To provide a

5As discussed in Saiz (2010), unlike predetermined geographic features such as oceans, lakes, and moun-
tains, zoning and other land-use regulations are endogenous to prices. Saiz (2010) thus endogenizes the
regulatory component of housing supply elasticity in the model used to estimate elasticities. The measure
of regulatory intensity is based on the Wharton Residential Land Use Regulation Index, constructed by
Gyourko et al. (2008). This regulatory index provides an aggregate measure of the restrictiveness of local
land use regulations based on 11 subindexes, which include a local political pressure index, state political
involvement index, state court involvement index, local zoning approval index, local project approval in-
dex, local assembly index, supply restrictions index, density restrictions index, open-space index, exactions
index, and approval delay index.

6Baum-Snow and Han (2024) offer several elasticity estimates. We use the authors’ ”preferred” quadratic
finite mixture model estimates. We use the elasticity estimates from the 2021 working paper version, which
produces nearly identical groupings of tracts as the estimates in the published version of the paper.
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tract-level measure of housing supply elasticity that is comparable across metropolitan

areas, we take the simple average of metro-level (Saiz, 2010) and tract-level (Baum-Snow

and Han, 2024) supply estimates, but our conclusions are similar when using more so-

phisticated methods of combining these parameters.7 This value ranges from the most

inelastic of 0.25 (Census tract 186.10 in San Diego, California) to the most elastic of 3.17

(Census tract 100.04 in Wichita, Kansas). We again group tracts into eight equal-sized bins

based on this average value.

3.4 Summary statistics and an application to air quality improvements

Table 1 presents the central summary statistics for the 25,843 Census tracts that form the

basis of our analysis. Across all tracts in the sample, the average PM2.5 concentration was

13µg/m3 in 2000, and the average change over the 2000–2010 decade was a decline of

3µg/m3. Over this decade, home prices increased by an average of 32.7% and population

counts increased by an average of 10.8 log points. Table 1 also presents statistics in each

of the eight bins of metro-level housing supply elasticity, based on the measure in Saiz

(2010). Bin 1, the most inelastic group of Census tracts, started the period with the highest

average concentrations of PM2.5 and experienced the largest subsequent declines over the

decade. Column 6 shows the average metro-level elasticity in each bin, while column 7

describes the average metro/tract-level elasticity taken by simple mean of the measures

from Saiz (2010) and Baum-Snow and Han (2024).

In Section 2, we showed that outward demand shifts should yield larger price growth

in markets with more inelastic supply and larger population growth in markets with more

elastic supply. While the statistics in Table 1 are purely descriptive, they are consistent

with this stylized exposition. Housing prices tended to grow more in the most inelastic

housing markets, while population counts tended to grow more in the most elastic hous-

7The tract-level elasticity estimates from Baum-Snow and Han (2024) are smaller in magnitude than
those in Saiz (2010). This results from differences in the study periods as well as the nature of demand
shocks used for identification. The elasticity parameters in Saiz (2010) are estimated over the 1970–2000
period, while those in Baum-Snow and Han (2024) are estimated between 2000 and 2010.
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Table 1: Summary statistics for primary outcome & independent variables

(1) (2) (3) (4) (5) (6) (7)
PM2.5 conc.

(2000)
Med. home
value (2000)

∆PM2.5

2000–10
2010 HPI

(2000=100)
∆ln(pop)
2000-10

Metro-level
elasticity

Metro/tract
elasticity

Full sample: (N=25,843)
mean 13.0 113,260 -3.0 132.7 10.8 1.6 0.9
(sd) (3.4) (63,842) (1.8) (28.8) (27.7) (0.9) (0.5)

8 bins of Saiz (2010) elasticity
1 (most 15.0 161,813 -4.4 155.8 4.8 0.6 0.4

inelastic) (4.9) (87,929) (2.5) (25.6) (19.0) (0.0) (0.1)

2 12.7 147,508 -2.9 138.4 7.4 0.8 0.5
(2.5) (80,922) (1.3) (24.4) (24.3) (0.0) (0.1)

3 13.1 97,863 -3.6 126.8 12.3 1.0 0.6
(4.5) (41,315) (2.3) (20.4) (28.0) (0.1) (0.1)

4 12.2 105,208 -2.8 121.7 7.9 1.3 0.8
(2.7) (47,300) (1.6) (34.8) (24.6) (0.1) (0.1)

5 12.7 113,858 -3.5 148.1 9.8 1.6 0.9
(2.6) (54,065) (1.1) (31.5) (27.5) (0.0) (0.1)

6 12.2 90,808 -2.5 129.9 15.0 2.0 1.2
(3.4) (40,335) (1.7) (21.1) (33.5) (0.2) (0.1)

7 14.0 92,350 -2.6 117.3 14.1 2.5 1.4
(2.4) (43,426) (1.4) (20.7) (29.0) (0.1) (0.1)

8 (most 12.2 83,502 -1.6 120.0 17.9 3.4 1.9
elastic) (2.2) (35,861) (1.2) (16.1) (33.2) (0.6) (0.3)

Median home value is based on Census estimates retrieved from Social Explorer and is reported in 2000-
level (nominal) dollars. 2000-level PM2.5 concentrations and its change are based on the values reported
in van Donkelaar et al. (2019). The 2010 housing price index (HPI) is retrieved from FHFA. Change in
ln(population) is based on estimates from the Census, retrieved from the Social Explorer database, and is
multiplied by 100 for ease of interpretation. Metro-level elasticity refers to the elasticity derived in Saiz
(2010), while metro/tract elasticity refers to the average elasticity across Saiz (2010) and Baum-Snow and
Han (2024).

ing markets over the 2000 to 2010 period. One goal of our empirical analysis is to explore

the extent to which these diverging growth patterns are attributable to CAA-induced re-

ductions in PM2.5 concentrations.

4 Methodological approach

In this section, we outline our approach to estimating the relationship between regulation-

induced air quality improvements (i.e., declines in PM2.5 concentrations) and subsequent
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price and population growth. Our general approach follows Chay and Greenstone (2005)

and subsequent research by instrumenting for mid-period CAA nonattainment status to

estimate the effect of air quality improvements on local outcomes. Unlike existing lit-

erature, the central goal of our empirical analysis is to use this framework to examine

heterogeneity in price and quantity effects across places with varying housing supply

elasticities.

We begin with the following long-difference equation:

∆yj = β0 + β1∆PM2.5j + X′
jγ + δd + εj (1)

Where ∆yj is the long-difference change in the outcome variable in tract j between 2000

and 2010, ∆PM2.5j is the long-difference change in average PM2.5 concentrations in tract

j over the same period, X′
j reflects tract-level covariates, and δd represents Census divi-

sion fixed effects. We focus on two outcome variables: the tract’s 2010 HPI (indexed to

2000, such that it reflects the percent change in housing prices), and the 2000–2010 change

in the natural log of tract population. The inclusion of Census division fixed effects ab-

sorbs secular trends in price and population movements that differ across regions. Our

conclusions are largely robust to alternative levels of geographic controls (e.g., region).

Tract-level covariates include the share of the tract population that is non-Hispanic white,

the share of adults with a college degree, median household income, the share of housing

units that are occupied, and the share of occupied housing units that are renter-occupied.

These covariates are meant to capture observable demographic, educational, economic,

and housing market characteristics that might influence housing prices or population

growth as well as pollution concentrations, although the point estimates are quite sta-

ble across specifications (i.e., omitting control variables). We cluster standard errors at

the county level. When estimating equation 1 using Ordinary Least Squares (OLS), β1

measures the association between a one-unit change in average tract-level PM2.5 concen-
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trations and the change in the tract’s housing price or population between 2000 and 2010,

after conditioning on observable covariates.

To determine whether the relationship between air quality improvements and as-

sociated price and quantity changes differs depending on the elasticity of local housing

supply, we estimate a slightly modified version of equation 1, where we interact ∆PM2.5j

with a binned value of the tract’s housing supply elasticity, ej . We allow for eight, equal-

sized bins and estimate the following:

∆yj =
8∑

q=1

βq (∆PM2.5j × 1[ej = q]) + X′
jγ + δd + εj (2)

Tracts in the lowest quantile (ej = 1) are the most inelastic and tracts in the highest

quantile (ej = 8) are the most elastic. The eight bins are collectively exhaustive of all

Census tracts in the sample. Our central method for grouping tracts into bins relies on

the metro-level elasticities in Saiz (2010). We also group tracts into eight equal-sized bins

based on the average of this value and the tract-level elasticity estimated in Baum-Snow

and Han (2024), as described in Section 3. The conclusions are insensitive to the number

of quantiles, q. In equation 2, β1 measures the relationship between a change in PM2.5

concentrations and the outcome of interest in the most inelastic quantile, β2 measures this

relationship in the second-most inelastic quantile, etc., and β8 measures this relationship

in the most elastic quantile. Again, our outcomes of focus are the 2010 HPI and the 2000–

2010 change in the natural log of the population. A comparison of the point estimates

across bins reveals how the ‘price’ and ‘quantity’ effect of air quality improvements differs

across places with varying housing supply constraints.

4.1 Causal inference: Clean Air Act

Many unobserved characteristics covary with both air pollution and the central outcomes

of interest, introducing bias in the estimation of the pollution-price or pollution-population
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gradient. The issue of misspecification in the traditional hedonic price model has been

addressed using a wide variety of quasi-experimental solutions.8 Following Currie et al.

(2023) and others, we exploit the introduction of the Clean Air Act (CAA) 1997 PM2.5 Na-

tional Ambient Air Quality Standards (NAAQS), which went into effect in 2005, to isolate

regulation-induced changes in PM2.5 concentrations over the 2000–2010 decade. The an-

nual air quality standard for PM2.5 set by the regulation was 15 micrograms per cubic

meter (µg/m3), based on the three-year average of annual mean PM2.5 concentrations.9 In

December of 2004, EPA issued official designations for the 1997 PM2.5 standards, classi-

fying areas as nonattainment if they violated the 1997 annual standard over a three-year

period. These areas are displayed in blue in Figure 2. Following this designation, states

with nonattainment areas were required to submit to the EPA state implementation plans

(SIPs) identifying how nonattainment areas would meet PM2.5 standards, and meet these

standards by 2010. The observed decline in PM2.5 concentrations between 2000 and 2010,

based on the estimates provided by van Donkelaar et al. (2019), is shown in Figure 3.

Figure 2: NAAQS PM2.5 nonattainment areas

Notes: Areas classified as nonattainment under the 1997 NAAQS (as announced in December 2004) are
indicated in blue. Source: U.S. Environmental Protection Agency (EPA).

A comparison of Figures 2 and 3 indicates that while much of the country experi-

enced air quality improvements over the 2000-2010 period, many of the areas with the
8See, for example, Chay and Greenstone (2005); Bayer et al. (2009); Lee and Taylor (2019); Banzhaf (2021).
9The regulation also imposed a daily standard of 65 µg/m3.
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Figure 3: Change in average annual PM2.5 concentrations, 2000-2010

Notes: Figure reflects the change in average annual PM2.5 concentrations between 2000 and 2010, where
annual PM2.5 concentrations are based on the estimates provided by van Donkelaar et al. (2019).

greatest improvements (e.g., Southern California, Northern Georgia, and the Central At-

lantic region) were those that were in nonattainment in 2005. Indeed, Currie et al. (2023)

document that the 1997 NAAQS greatly improved air quality in newly regulated areas.10

We leverage these differential regulation-induced air quality improvements across place

by instrumenting for ∆PM2.5j in equations 1 and 2 with a dummy variable indicating

whether the tract was in a nonattainment status area in 2005.11 Note that the regression

coefficient on the change in PM2.5 concentrations, β1 in equation 1 or βq in equation 2, will

be negative if the regulation-induced declines in PM2.5 concentrations (i.e., air quality

improvements) yield increased housing prices or population counts.

The typical identifying assumption in this IV approach is that conditional on ob-

servable characteristics, nonattainment status is exogenous to expected outcomes. In this

setting, this would be violated if places that were designated as nonattainment were on

differential price or quantity trajectories than those in attainment, or if nonattainment sta-

tus has a direct impact on outcomes that is distinct from its impact that occurs through

10In Appendix Figure A1, we reproduce a version of the first-stage event study in Currie et al. (2023)
using our sample of metro-area Census tracts and the pollution data from van Donkelaar et al. (2019). The
figure reveals extremely similar patterns in pollution changes across tracts in attainment versus nonattain-
ment areas in the years prior to, but not after, the new standards took effect, when nonattainment tracts
experienced relative declines in pollution concentrations.

11We cluster standard errors by county, as nonattainment “areas” tended to align with county boundaries.
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pollution reductions (e.g., employment effects). In the Supplemental Appendix, we inter-

rogate pre-period trends in population counts and housing prices, and we demonstrate

that our conclusions are robust to matching attainment and nonattainment tracts in a

similar spirit as Sager and Singer (2022). This strategy produces quantitatively similar es-

timates as our primary specification. However, we note that the central goal of our anal-

ysis is not simply to estimate the price capitalization of air quality improvements, but to

characterize how this capitalization differs across tracts with varying degrees of housing

market constraints. We further demonstrate that the conclusions are similar when exam-

ining heterogeneity in capitalization effects across tracts within counties. This approach

absorbs the average effect as well as any differential trends that might exist at the county

level.

Restricting the sample to Census tracts with non-missing HPI values and non-missing

elasticity estimates yields a sample of 25,843 Census tracts. The first-stage F-statistic on

the nonattainment instrument is about 70. Table 2 shows this first-stage relationship, and

indicates that nonattainment status is associated with about a 1.7-µg/m3 decline in PM2.5

concentrations over the 2000 to 2010 period, relative to an average PM2.5 concentration of

13.0 µg/m3 in 2000 across the entire sample (Table 1). Table 2 also displays the reduced-

form relationship between nonattainment status and the outcomes of interest, indicating

that nonattainment status is associated with a 9.2 percent increase in housing prices and

a statistically insignificant and small (0.08 log points) increase in population. Table 1

showed that tracts classified as the most inelastic based on their metropolitan area’s Saiz

(2010) elasticity began the period with higher average PM2.5 concentrations of more elas-

tic tracts. This implies that a 1-unit reduction in PM2.5 concentrations represents a smaller

percent change in inelastic tracts compared to elastic tracts.12

12This could produce differential price effects in inelastic and elastic markets independent of differential
housing supply constraints. If housing prices are more responsive to larger relative (i.e., percent) improve-
ments in air quality, elastic tracts should experience larger price effects in response to a 1-unit improvement.
Chay and Greenstone (2005) provide “modest evidence” that MWTP for pollution reductions is lower in
communities with relatively high pollution levels, consistent with preference-based sorting. Both of these
phenomena would result in larger price effects in elastic markets.
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Table 2: First stage and reduced form: Nonattainment status

(1) (2) (3) (4) (5) (6)
∆ PM2.5, 2000-10 2010 HPI (2000=100) ∆ ln(pop), 2000-10

Nonattainment -1.685*** -1.574*** 10.289** 9.196** -0.506 0.081
(0.209) (0.187) (4.831) (4.367) (1.742) (1.290)

Controls ✓ ✓ ✓
Division FE ✓ ✓ ✓ ✓ ✓ ✓
F-stat (nonatt) 64.76 70.47
R-squared 0.487 0.512 0.371 0.430 0.037 0.119
Observations 25,843 25,843 25,843 25,843 25,843 25,843

Standard errors, in parentheses, are clustered by county. Controls include the share of the tract popula-
tion that is non-Hispanic white, the share of adults with a college degree, median household income, the
share of housing units that are occupied, and the share of occupied housing units that are renter-occupied.
Nonattainment status refers to the 1997 NAAQS standards, which went into effect in 2005.
*** p<0.01, ** p<0.05, * p<0.1

While our strategy addresses endogeneity concerns around air quality, it does not

address potential selection across elastic and non-elastic places. Conditional on observ-

able characteristics, individuals may still sort into elastic or inelastic housing markets

based on their underlying preferences for air quality. If sorting arises due to unobserv-

able taste dispersion, then the underlying MWTP for pollution reductions should differ

across housing markets. Individuals living in relatively inelastic markets (e.g., the coasts)

might differ from individuals living in relatively elastic markets (e.g., the sunbelt) in ways

that are correlated with their preferences for air quality. We include a rich set of observ-

able tract-level covariates (X′
j) in our regression to address these concerns. However, we

are unable to rule out that self-selection could drive some variation in the price response

to pollution reductions. While this is a limitation in our analysis, it does not obstruct the

broader conceptual point that market constraints influence the capitalization of amenity

improvements.

As discussed in Bishop et al. (2020), another challenge is that price functions may

change over time. Kuminoff and Pope (2014), Banzhaf (2021), and others show that the

MWTP estimate produced in the typical difference-in-differences framework combines
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information on two hedonic price functions (pre- and post-treatment) and thus may be

biased. Our setting overlaps with the Great Recession and the associated housing crisis,

which fundamentally altered the price functions in housing markets across the United

States. While this complicates the MWTP estimate produced from price capitalization in

the canonical setting for the reasons discussed by Kuminoff and Pope (2014) and Banzhaf

(2021), the central goal of our reduced-form exercise is to interrogate a different, distinct

source of bias in the canonical framework: the assumption of fixed quantities. Our em-

pirical approach leverages variation in local housing supply elasticities to illuminate how

price capitalization and quantity effects of air quality improvements differ based on these

market constraints.13 We present a theoretical strategy to recover MWTP in the presence

of price and quantity margins in Section 6.

5 Results: Price and quantity effects of air quality improvements

This section presents our central reduced-form results on the price and quantity effects

of air quality improvements. Section 5.1 presents point estimates on these effects across

all 25,843 metro-area Census tracts in our sample with non-missing HPI values and non-

missing elasticity estimates.14 We show in the Supplemental Appendix that these results

are largely robust to alternative weighting schemes that explicitly address potential pre-

trends in the central outcome variables. In Section 5.2, we demonstrate how price and

quantity effects differ depending on the elasticity of local housing supply. These results

suggest that housing supply constraints are relevant to the price capitalization of amenity

improvements, and motivate the creation of a tractable model for benefit estimation in

Section 6 that explicitly incorporates the capacity for markets to accommodate increased

demand via increases in quantity.

13We further demonstrate that our conclusions are robust to examining variation in price and quantity
effects within individual counties, thus absorbing any differential impacts of the Great Recession across
labor markets.

14We illustrate how price responses differ across various lengths of time in the Supplemental Appendix,
showing that prices are relatively more responsive under short time horizons.
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5.1 Price and quantity impacts of air quality improvements

We first examine the price and population response to changes in average annual PM2.5

concentrations over the 2000 to 2010 period without differentiating housing markets ac-

cording to local housing supply constraints. Table 3 shows the OLS and nonattainment

status IV coefficient estimates of β1 in equation 1, detailing the relationship between

changes in average annual PM2.5 concentrations and tract-level housing prices and popu-

lation sizes across the 25,843 metropolitan Census tracts. The change in the natural log of

the population has been multiplied by 100 to facilitate interpretation as an approximation

of the percent change in the population. The point estimate from our primary specifi-

cation including all tract-level controls (column 4) indicates that a CAA-induced 1-unit

(µg/m3) decline in average annual PM2.5 concentrations yields a 5.8 percent increase in

tract-level housing prices in 2010 relative to 2000 levels. The IV estimates for housing

prices are substantially larger, and more precise than the OLS estimates. This is consis-

tent with the evidence presented in Chay and Greenstone (2005) and other hedonic price

evaluations of the demand for air quality improvements. The positive OLS coefficients

in columns 5 and 6 imply that population declines with pollution declines, which is con-

sistent with the fact that there is a strong correlation between pollution and economic

activity. When we instrument for declining pollution levels with regulatory designations

(columns 7 and 8), this relationship becomes statistically indistinguishable from zero.

One might be concerned that nonattainment tracts were on different trajectories than

attainment tracts independent of their regulatory status, which may confound the inter-

pretation of the estimates presented above. Using a similar IV strategy as here, Sager and

Singer (2022) demonstrate that matching nonattainment to attainment tracts based on

pre-regulation pollution levels produces attenuated estimates of the pollution effects of

nonattainment status (i.e., the first stage), but it increases estimates of price capitalization

in response to regulation-induced pollution declines. In the Supplemental Appendix, we

show that the price and quantity impacts of regulation-induced pollution declines pre-
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Table 3: Price and population responses to ∆PM2.5, 2000-2010

(1) (2) (3) (4) (5) (6) (7) (8)
2010 HPI (2000=100) ∆ ln(population), 2000-2010

OLS IV OLS IV

∆PM2.5, ’00-10 -1.551 -0.984 -6.108** -5.843** 1.608*** 0.880** 0.301 -0.051
(1.438) (1.316) (2.664) (2.750) (0.488) (0.418) (1.030) (0.818)

Controls ✓ ✓ ✓ ✓
Division FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 25,843 25,843 25,843 25,843 25,843 25,843 25,843 25,843

Standard errors, in parentheses, are clustered by county. Controls include the share of the tract population
that is non-Hispanic white, the share of adults with a college degree, median household income, the share of
housing units that are occupied, and the share of occupied housing units that are renter-occupied. Columns
3, 4, 7, and 8 instrument for change in PM2.5 with NAAQS nonattainment status, as described in text. The
outcome variable in columns 5 through 8 has been multiplied by 100 for ease of interpretation.
*** p<0.01, ** p<0.05, * p<0.1

sented in Table 3 are robust to alternative weighting schemes where we match nonattain-

ment and attainment tracts according to pre-trends in price and population changes and

weight observations according to the weights produced in this matching process. Below,

we present the results from a specification that controls for county fixed effects, which

will additionally absorb any unobserved county-level attributes that may differentially

influence price and population trajectories across labor markets.

5.2 Price and quantity impacts by housing supply elasticity

The primary goal of our empirical analysis is to examine heterogeneity in the effect of

air quality improvements across more inelastic or elastic housing markets. To do so, we

estimate equation 2 for the 25,853 Census tracts in our sample, grouping tracts into eight

bins of metro-level elasticity according to the values in Saiz (2010), where bin 1 is the

most inelastic and bin 8 is the most elastic. Figure 4 reports the estimated coefficients βq

in equation 2 (and 95 percent confidence intervals), where we instrument for the change

in average annual PM2.5 concentrations over the 2000 to 2010 period with nonattainment

status. The top panel (a) reports the coefficient estimates for HPI (the ‘price’ effect), and
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the bottom panel (b) reports the coefficient estimates for population changes (the ‘quan-

tity’ effect). The estimates in each panel are estimated from a single regression that in-

cludes controls for the share of the tract population that is non-Hispanic white, the share

of adults with a college degree, median household income, the share of housing units that

are occupied, the share of occupied housing units that are renter-occupied, and division

fixed effects, with standard errors clustered by county.

We find that regulation-induced air quality improvements yield larger housing price

increases in tracts defined by inelastic housing markets, and larger population increases

in tracts defined by elastic housing markets, consistent with the stylized model presented

in Section 2. The leftmost point estimate in the top panel of Figure 4 implies that a 1-unit

decline in annual PM2.5 concentrations produces an 8.7 percent increase in housing prices

in the most inelastic tracts, compared to a (statistically insignificant) 2.5 percent decline

in housing prices in the most elastic tracts. There is a clear relationship between supply

elasticities and price capitalization, with housing prices increasing the most in response to

regulation-induced pollution declines in the most inelastic tracts.15 The implied elasticity

of housing prices with respect to PM2.5 changes is about -1.3 in the most inelastic tracts,

compared to -0.75 across all metro-area Census tracts in the sample.16

The bottom panel of Figure 4 — showing the quantity effect — displays a somewhat

striking mirror-image version of the price effect. Regulation-induced pollution declines

yield the largest population increases in the most elastic Census tracts. The rightmost

point estimate in the bottom panel implies that a 1-unit decline in annual PM2.5 concen-

trations produces about a 5.7 percent increase in population in the most elastic tracts.

15The most inelastic bin of tracts began the period with higher levels of annual PM2.5 emissions than
other bins (15 µg/m3 in the most inelastic tracts versus 13 µg/m3 across all tracts in the sample), such that
a 1-unit decline reflects about a 6.7 percent decline in emissions in inelastic tracts compared to 7.7 percent
decline across all tracts. Thus, in percentage terms, a smaller pollution decline yields a much larger price
increase in inelastic markets.

16The implied elasticity of housing prices with respect to PM2.5 changes reported in Sager and Singer
(2022) is -1.1. Sager and Singer (2022) estimate the elasticity over a slightly shorter time horizon such that
prices should be more responsive to changes in air quality, and thus the elasticity estimates in both papers
are quite comparable. For reference, Chay and Greenstone (2005) estimate that the implied elasticity of
housing prices with respect to TSP concentrations is between -0.2 and -0.35.
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Figure 4: Price and population response to changes in PM2.5, by metro-level elasticity

(a) Outcome: 2010 HPI (2000=100)

(b) Outcome: ∆ln(population), 2000-10

Notes: Figure shows the point estimates and 95 percent confidence intervals of the regression coefficient βq

on change in tract-level PM2.5 concentrations over the 2000–2010 period interacted with the tract’s metro-
level elasticity quantile based on Saiz (2010). Tracts are broken into 8 quantiles, where 1 is the most inelastic.
The point estimates in each sub-figure are produced from a single regression, which includes controls for the
share of the tract population that is non-Hispanic white, the share of adults with a college degree, median
household income, the share of housing units that are occupied, the share of occupied housing units that
are renter-occupied, and division fixed effects. Standard errors are clustered by county. We instrument for
the change in PM2.5 with NAAQS nonattainment status, as described in text. The outcome variable in the
bottom panel has been multiplied by 100 for ease of interpretation.
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Moving rightward from the leftmost estimate, indicating a statistically indistinguishable

quantity effect in the most inelastic Census tracts, there is a clear downward trend in

the coefficient estimate. Population responses to pollution decline increase as places are

characterized by more elastic housing markets. Together, panels a and b of Figure 4 are

suggestive that regulation-induced declines in PM2.5 concentrations yield both price and

quantity effects, with the relative strength of these margins dictated by local housing sup-

ply elasticities.

We note that the grouping of Census tracts into eight bins of metro-level elasticity es-

timates is meant for expositional purposes — there is nothing special about these cut-offs,

and the relationship is quite similar using different thresholds (e.g., using four quantiles

or ten quantiles). We also note that there exists heterogeneity in supply constraints within

metropolitan areas, and not just across. In Figure 5, we replicate the analysis above but

incorporate tract-level elasticity estimates from Baum-Snow and Han (2024) using the av-

erage of their tract- and metro-level elasticity estimates from Baum-Snow and Han (2024)

and Saiz (2010). This produces extremely similar patterns to those observed in Figure

4. With the exception of bin 5, the most supply-constrained tracts experience the largest

price capitalization of pollution declines. Concurrently, the most elastic-supply tracts ex-

perience the largest population increases in response to pollution declines.17

To further interrogate the heterogenous price and quantity effects of these pollution

reductions, we present the point estimates from a modified version of equation 2 which

controls for county fixed effects. Here, we group tracts into eight equal-sized bins based

only on the tract-level elasticity estimates from Baum-Snow and Han (2024), which are

primarily meant for comparison within labor markets rather than across. This specifi-

cation will absorb the average effect of regulation-induced pollution improvements and

17Housing markets may be relatively more inelastic in shorter-run settings, as one cannot build new
housing units immediately, even in elastic-supply places. Similarly, even inelastic-supply locations become
relatively elastic over long enough time horizons. In the Supplemental Appendix, we consider how price
capitalization changes over progressively longer long-difference settings. As expected, we find that price
capitalization attenuates over progressively longer time horizons.
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Figure 5: Price and population response to changes in PM2.5, by tract- and metro-level
elasticity

(a) Outcome: 2010 HPI (2000=100)

(b) Outcome: ∆ln(population), 2000-10

Notes: Figure shows the point estimates and 95 percent confidence intervals of the regression coefficient
βq on the change in tract-level PM2.5 concentrations over the 2000–2010 period interacted with the tract’s
elasticity quantile, based on the average of tract- (Baum-Snow and Han, 2024) and metro- (Saiz, 2010) level
elasticities. Tracts are broken into 8 quantiles, where 1 is the most inelastic. The point estimates in each sub-
figure are produced from a single regression, which includes controls for the share of the tract population
that is non-Hispanic white, the share of adults with a college degree, median household income, the share of
housing units that are occupied, the share of occupied housing units that are renter-occupied, and division
fixed effects. Standard errors are clustered by county. We instrument for the change in PM2.5 with NAAQS
nonattainment status, as described in text. The outcome variable in the bottom panel has been multiplied
by 100 for ease of interpretation.
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identify variation in the price or quantity effect within counties based on the tract-level

supply elasticity. Additionally, the inclusion of county fixed effects will absorb any non-

regulation-induced price or population trends occurring at the labor market level over

this period that could confound the interpretation of the baseline results. Because the av-

erage effect is absorbed by the county fixed effect, we omit one bin from the regression

specification, such that the coefficients reflect the difference in the effect compared to the

most elastic quantile of tracts (bin 8). Figure 6 presents these results.

The top panel of Figure 6 shows that the regulation-induced decline in PM2.5 con-

centrations produces larger housing price increases in more inelastic tracts within a given

county. The bottom panel displays the opposite relationship for population changes, such

that the most elastic tracts experience the largest population declines in response to pol-

lution reductions. These point estimates are not directly comparable to those in Figures 4

and 5, as they display the change in the treatment effect across different groups of tracts

within a county relative to the most elastic quantile, rather than the treatment effect it-

self which is absorbed by the county fixed effect. However, they are consistent with the

conclusion that the price and quantity effects of pollution improvements vary across lo-

cations with different housing supply elasticities.

The relationships described in this section are consistent with the basic economic

theory that housing market constraints play a role in determining the price and quantity

effects of demand shifts. What is less clear is what this implies for hedonic estimates of

the marginal benefits of pollution reductions, or amenity changes more broadly. If price

capitalization were the sufficient statistic necessary for estimating MWTP, the coefficient

estimates in the top panels of Figures 4 and 5 imply that the benefits of PM2.5 reductions

are larger in inelastic-supply places. However, the quantity effects in the bottom pan-

els of these figures indicate that other margins of adjustment likely attenuate the price

capitalization in elastic-supply places, biasing MWTP estimates toward zero. In the fol-

lowing section, we present a simple spatial equilibrium model that allows us to interpret
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Figure 6: Within-county price and population effects, by tract-level elasticity

(a) Outcome: 2010 HPI (2000=100)

(b) Outcome: ∆ln(population), 2000-10

Notes: Figure shows the point estimates and 95 percent confidence intervals of the regression coefficient
βq on the change in tract-level PM2.5 concentrations over the 2000–2010 period interacted with the tract’s
elasticity quantile, based on estimates in Baum-Snow and Han (2024). Tracts are broken into 8 quantiles,
where 1 is the most inelastic. The point estimates in each sub-figure are produced from a single regression,
which includes county fixed effects. Bin 8 is omitted from the regression. Standard errors are clustered by
county. We instrument for the change in PM2.5 with NAAQS nonattainment status, as described in text.
The outcome variable in the bottom panel has been multiplied by 100 for ease of interpretation.
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the reduced-form price coefficient as MWTP modified by local housing supply elastici-

ties. This model offers a way to estimate MWTP for pollution reductions in the presence

of quantity effects.

6 A model for air-quality improvements

That pollution declines yield larger price increases in places characterized by relatively

inelastic housing markets, and greater population increases in places characterized by

relatively elastic housing markets is consistent with the basic logic of supply and demand

presented in Section 2. However, the presence of a quantity margin poses a problem for

hedonic valuation, as the expansion of the market may attenuate the price capitalization

of demand shifts. To make progress towards incorporating this quantity margin into the

hedonic method, we develop a simple spatial equilibrium model for air-quality improve-

ments. This model builds on the long line of research that extends the logic of Rosen

(1979) and Roback (1982) to estimate demand for amenities.18 We show that when hous-

ing supply is perfectly inelastic, the hedonic price coefficient is a sufficient statistic for

estimating MWTP. When housing is elastically supplied, MWTP can be estimated by in-

corporating a measure of the housing supply elasticity into the traditional hedonic price

capitalization approach.

6.1 Spatial equilibrium model

Assume that there are a large number of places indexed by j. All workers inelastically

supply one unit of labor to their local labor market earning a wage of Wj . We assume that

there is one type of worker, such that all workers have the same marginal productivity

18Our model is most similar to Glaeser and Tobio (2007), who present a Rosen-Roback framework that
uses changes in population, income, and housing prices to assess the sources of growth in the Sunbelt.
Bartik et al. (2019) also use the concept of spatial equilibrium to infer MWTP for amenity changes. Other
related extensions include Diamond (2016) and Bieri et al. (2023), among others. Our model builds on others
like Chattopadhyay (1999) and Bajari and Kahn (2005) by using housing price data with assumptions about
utility to estimate MWTP, but we advance this tradition by explicitly incorporating elastic housing supply
and the relevant quantity margin in demand estimation.
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(and hence face the same wage, Wj).19 Workers consume one unit of a local good (hous-

ing) with a price Rj and they consume a tradable good X with price of 1. They also gain

utility from local amenities, Sj .

Worker i’s indirect utility is given by:

Vij = Wj + Sj − lnRj + εij (3)

where εij reflects worker i’s idyosyncratic preferences for place j.

There are a total of Nj workers in place j, and
∑

j Nj = Ntotal. Inverse supply of the

local good (housing) is given by:

lnRj = R̄ + ρj lnNj (4)

where the number of housing units in place j is equal to the number of workers, Nj , such

that each worker consumes one unit of housing. The parameter ρj is the inverse elasticity

of the supply of housing (Moretti, 2011). It is influenced by place-specific qualities such

as geographic characteristics and local land use regulations. In locations with substantial

geographic barriers to development and restrictive regulations, ρj will be large. In loca-

tions with relatively loose regulatory codes and ample developable land, ρj will be very

small. In the extreme case in which housing supply is perfectly inelastic and the supply

curve is vertical, ρj will be infinite.

Assume that εij follows a Type 1 Extreme Value distribution. The number of workers

living in place j can be written in terms of the probability that worker i chooses to live in

19We do not explicitly model mobility costs. Bayer et al. (2009) provide a careful treatment of this issue,
showing that the failure of individuals to move to areas experiencing air quality improvements could be
partially due to mobility frictions. Failing to account for these migration costs would downwardly bias
estimates of the disutility associated with pollution.
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place j, scaled by the number of workers (Ntotal):20

Nj = Ntotal

exp
(
Wj + Sj − R̄

)
N

−ρj
j∑

k exp (Wk + Sk − lnRk)
(5)

Writing log population (lnNj) and housing prices (Rj) as functions of amenity value

Sj and taking the long difference in each variable over time produces:21

∆ lnNj =
1

1 + ρj
(∆Wj +∆Sj +∆R̄) (6)

∆ lnRj =
ρj

1 + ρj
(∆Wj +∆Sj) +

1

1 + ρj
∆R̄ (7)

We allow amenity value Sj to be a linear function of local pollution concentrations

Xj :

Sj = γ0 + γ1Xj + νj (8)

Taking the long difference of this expression over time produces:

∆Sj = γ1∆Xj + ν̃j (9)

where ν̃j is an unobservable determinant of ∆Sj .22

We assume that wages are orthogonal to local pollution concentrations Xj , but ex-

20This is based on the conditional logit setup from McFadden (1973), used in a variety of settings in urban
economics such as Diamond (2016).

21These expressions are produced by first taking the natural log of equation 5 and letting C1 =

ln
(

Ntotal∑
k exp(Wk+Sk−lnRk)

)
to get lnNj =

1
1+ρj

(
Wj + Sj − R̄

)
+C1. Plugging this expression into the inverse

housing supply expression (equation 4) and simplifying produces:

lnRj =
ρj

1 + ρj
(Wj + Sj) +

1

1 + ρj
R̄+ C2

where C2 =
ρj

1+ρj
C1. Taking the long difference of these expressions over time produces equations 6 and 7.

For brevity, we have omitted time subscripts in these expressions. We assume that Wj , Nj , Sj , Rj , and R̄
may vary across time, while other parameters are assumed to be time-invariant.

22γ0 is assumed to be time-invariant. ν̃j is not orthogonal to air quality improvements ∆Xj , as unob-
served characteristics may covary with both air quality and amenity improvements.
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tending the model to allow local pollution concentrations to influence local productivity

produces similar conclusions.23 Plugging equation 9 into the expressions for population

(equation 6) and housing prices (equation 7), we can write the central parameters as func-

tions of ∆Xj :

∆ lnNj =
1

1 + ρj
(∆R̄ +∆Wj) +

γ1
1 + ρj

∆Xj + ξnj (10)

∆ lnRj =
ρj

1 + ρj
∆Wj +

1

1 + ρj
∆R̄ +

ρjγ1
1 + ρj

∆Xj + ξrj (11)

where ξnj =
ν̃j

1+ρj
and ξrj =

ρj ν̃j
1+ρj

.

Equations 10 and 11 demonstrate how local population counts and housing prices

respond to local pollution concentrations. The marginal willingness to pay (MWTP) for

air pollution changes is given by the parameter γ1. These expressions demonstrate a cen-

tral insight from the stylized model presented earlier. The price and quantity effects of a

pollution decline are both modified by ρj , the inverse housing supply elasticity. Even if γ1

is constant across locations, such that there is no self-selection to inelastic or elastic places

based on preferences for clean air, an exogenous shift in local pollution concentrations

will yield larger housing price changes in places with inelastic housing supply, and larger

population count changes in places with elastic housing supply.

6.2 MWTP for amenity improvements from reduced-form estimates

Let β̂R and β̂N be the estimated causal effect of a 1-unit improvement in PM2.5 concentra-

tions (∆Xj) on the change in housing prices (∆ lnRj) and change in population (∆ lnNj),

respectively. From the model, we see that β̂R — the housing price capitalization of air

quality improvements — reflects the MWTP scaled by the expression ρj
1+ρj

:

23Empirically, we find little evidence that wages respond to local pollution concentrations in this context.
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β̂R =
ρj

1 + ρj
· γ1

Recall that ρj is the inverse housing supply elasticity, i.e., d lnRj

d lnNj
. This implies that

when housing supply is perfectly inelastic (i.e., as ρj → ∞), the coefficient from a typical

hedonic price regression thus offers a sufficient statistic for MWTP, γ1, because limρj→∞

ρj
1+ρj

= 1. However, when housing supply is not perfectly elastic (i.e., ρj
1+ρj

< 1), the

coefficient from this regression will reflect MWTP attenuated by ρj
1+ρj

. This attenuation

will be more severe when housing supply is very elastic, such that ρj is very small.

The model expressions reveal two reduced-form methods that researchers may use

to estimate MWTP in settings with elastic housing supply. First, if the housing supply

elasticity is a known parameter, its inverse can be used to define ρj for each unit of obser-

vation. The price capitalization of the amenity change ∆Xj interacted with the term ρj
1+ρj

then offers an estimate of γ1. Similarly, if ρj is constant across units of observation, one

can back out γ1 by dividing the classic hedonic price coefficient β̂R by ρ
1+ρ

.

Second, when ρj is unknown but does not vary substantially across observations,

both price and quantity margins can be used to back out both ρj and γ1. That is, when ρj

is unknown, one needs the additional parameter β̂N to calculate MWTP:

β̂N =
γ1

1 + ρj

The ratio of β̂R and β̂N offers the inverse housing supply elasticity parameter:

ρj =
β̂R

β̂N

Intuitively, because the exogenous shock to air quality acts as a demand shifter that moves

both prices and population counts, it can be leveraged to estimate the housing supply
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elasticity and γ1.24 Do note that ρj typically varies across place j, and thus this strategy

is most appropriately used in settings in which housing supply constraints do not vary

substantially across observations and a quantity margin can plausibly be identified.

In summary, the classic hedonic price coefficient β̂R is a sufficient statistic for ρj only

when housing supply is perfectly inelastic. When supply is not perfectly inelastic and

ρj is known, one can calculate MWTP, γ1, as the hedonic price regression coefficient on
ρj

1+ρj
∆Xj . When ρj is unknown and it does not vary substantially across observations, it

can be calculated as the ratio of β̂R and β̂N and used to back out the MWTP parameter, γ1.

6.3 MWTP estimates that incorporate elastic housing supply

Informed by the model expressions derived above, this section presents estimates of

MWTP for PM2.5 reductions which account for housing supply elasticities. We rely on

the first method to estimate MWTP, γ1, as housing supply constraints vary substantially

across tracts in our sample. This approach leverages elasticity estimates from the litera-

ture to define the inverse elasticity ρj . Following equation 11, we regress 2000–2010 price

changes on the change in PM2.5 multiplied by ρj
1+ρj

:

∆yj = β0 + βMWTP · ρj
1 + ρj

∆PM2.5j + X′
jγ + δd + εj (12)

where we impute ρj from the literature in one of three ways: ρj is defined as (i) the in-

verse of metro-level elasticity from Saiz (2010), (ii) the inverse of tract-level elasticity from

Baum-Snow and Han (2024), or (iii) the inverse of the average of the two elasticity esti-

mates. The outcome variable ∆yj reflects the tract’s 2010 HPI, indexed to 2000 levels. This

percent change in housing prices serves as a proxy for the change in log housing prices,

∆ lnRj , as defined in the model. As before, we instrument for the change in tract-level

24When housing is supplied elastically, the MWTP for the amenity can be estimated as:

γ1 = β̂R + β̂N

where β̂R and β̂N are the dollar-value equivalents of price and population changes in percent.
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PM2.5 concentrations between 2000 and 2010 with NAAQS nonattainment status. We

again include tract-level covariates X′
j , division fixed effects δd, and cluster errors at the

county level. When estimating equation 12 in this IV setting, βMWTP reflects the reduced-

form estimate of average MWTP for an additional unit decline in PM2.5 induced by the

CAA, accounting for heterogeneous supply elasticities across Census tracts.

Table 4: Price response to air-quality improvements, scaled by housing supply elasticity

(1) (2) (3) (4)
2010 HPI

∆ PM2.5, 2000-10 -5.843**
(2.750)

ρj
1+ρj

×∆ PM2.5, 2000-10 -12.69** -6.498** -9.722**
(4.952) (3.033) (4.042)

Controls ✓ ✓ ✓ ✓
Division FE ✓ ✓ ✓ ✓

Elasticity used to calc. ρj Baseline (no
interaction)

Metro-level Tract-level Metro- and
tract- average

Observations 25,843 25,843 25,843 25,843

Standard errors, in parentheses, are clustered by county. Controls include the share of the tract population
that is non-Hispanic white, the share of adults with a college degree, median household income, the share
of housing units that are occupied, and the share of occupied housing units that are renter-occupied. In
columns 2–4, we interact ∆ PM2.5 with ρj

1+ρj
, a measure of the inverse housing supply elasticity in tract j. In

column 2, this is defined as the inverse of the metro-level elasticity provided by Saiz (2010). In column 3, ρj
is the inverse of the tract-level elasticity provided by Baum-Snow and Han (2024). In column 4, we take the
average of the metro- and tract-level elasticities and define ρj as the inverse of this value. We instrument
for the primary independent variable (∆ PM2.5 between 2000 and 2010, or that scaled by ρj) with NAAQS
nonattainment status, as described in text.
*** p<0.01, ** p<0.05, * p<0.1

In Table 4, we present the IV coefficient estimates of βMWTP from equation 12 using

these three different methods of characterizing ρj , as well as the standard hedonic ap-

proach. Column 1 reproduces the estimate from Table 3 reflecting the reduced-form effect

of a 1-unit change in PM2.5 on tract-level HPI, without incorporating any measure of hous-

ing supply elasticity. A 1-µg/m3 decline in PM2.5 concentrations yields a 5.8% increase in

housing prices, or an increase of $6,570 over the 2000-level median home value in the

sample. Thus, the standard hedonic price capitalization approach would imply a MWTP
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of about $6,570 per household for a 1-unit improvement in air pollution. Extrapolating

from the first-stage coefficient from Table 2 (1.574), this implies that the NAAQS-induced

pollution reductions were valued at about $10,000 per household. Again, this estimate

implicitly assumes that housing supply is perfectly inelastic, such that the housing price

change is a sufficient statistic for estimating MWTP.

Columns 2–4 of Table 4 present estimates of MWTP that account for local housing

supply elasticities. The primary independent variable in these specifications is the change

in PM2.5 concentrations over the 10-year period times ρj
1+ρj

. Imputing ρj from housing sup-

ply elasticities drawn from the literature, we find that the average βMWTP ranges from 6.5

to 12.7 percent, which translates to about $7,360 to $14,384 per household per unit of pol-

lution reduction. Extrapolating from the first-stage coefficient as before, this implies that

the NAAQS-induced pollution reductions were valued at about $11,500 to $22,600 per

household. Consistent with theoretical predictions, these estimates of MWTP are larger

— on the order of about 12 to 117 percent larger — than the estimate induced from the

standard hedonic price coefficient. That the metro-level elasticity (column 2) produces

larger estimates than the tract-level elasticity (column 3), with the estimate produced by

the average measure (column 4) falling in between is explained by the relatively larger

elasticities estimated by Saiz (2010) compared to Baum-Snow and Han (2024).25 Given

that the smaller (i.e., more inelastic) tract-level estimates in Baum-Snow and Han (2024)

are produced from more recent demand shocks, and because the metro-level estimates

do not allow for heterogeneous supply elasticities across neighborhoods, the more con-

servative estimates produced in column 3 may be particularly relevant.26 The differences

in estimates produced using these alternative elasticity parameters highlight the notion

that the bias implicit in the classic hedonic approach will be more severe as the market in

25As discussed above, the differences in the magnitude of the elasticity estimates can be attributed to
differences in the study period and the nature of the demand shocks used for identification.

26The tract-level elasticities provide finer geographic detail but do not fully capture differences in elastic-
ities between metro areas. Therefore, both estimates provide valuable insights, and we do not consider one
to be inherently preferable to the other.
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question is more supply-elastic.

We caveat that this exercise requires that the housing supply elasticity is a known,

exogenous parameter. We draw from existing tract- and metro-level elasticity estimates

derived from alternative identification strategies to impute ρj , but the considerable vari-

ation in βMWTP displayed in Table 4 highlights the underlying variation in supply elas-

ticity estimates themselves. As progress continues to be made in quantifying credible

housing supply elasticities across finer geographic scales (Baum-Snow and Han, 2024),

we anticipate new opportunities to incorporate this parameter into the hedonic valuation

approach.

7 Conclusion and discussion

Many applications of the hedonic valuation approach exploit price capitalization in the

housing market to estimate demand for amenities. Implicit in these applications is the as-

sumption that the supply of housing is fixed, or perfectly inelastic, such that price capital-

ization is a sufficient statistic for MWTP. However, in elastic-supply settings, markets can

expand to accommodate increased demand. This quantity adjustment serves to attenu-

ate concurrent price adjustments, such that price capitalization offers a downward-biased

estimate of MWTP.

The empirical evidence presented in this paper suggests that housing supply con-

straints do indeed mediate the relationship between improvements in local amenities and

housing price growth. We exploit the implementation of the 1997 CAA NAAQS for PM2.5,

which took effect in 2005, to show that regulation-induced improvements in air qual-

ity lead to larger housing price increases in inelastic housing markets relative to elastic

housing markets. This indicates either that individuals living in inelastic markets have

stronger preferences for cleaner air, or that price changes alone are insufficient to mea-

sure demand for clean air. Consistent with a stylized model of supply and demand for

amenity improvements, we find that these regulation-induced air quality improvements
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lead to larger quantity changes (i.e., population increases) in elastic housing markets rel-

ative to inelastic housing markets.

Motivated by this empirical evidence, we develop a spatial equilibrium model that

allows for amenity changes to generate both price and quantity effects. Our model pro-

vides a new interpretation of the reduced-form effect of air quality improvements on

housing prices: this effect is an estimate of the MWTP scaled by the local housing supply

elasticity. Based on this insight, we provide new estimates of MWTP using CAA-induced

reductions in PM2.5 concentrations, as well as measures of local housing supply elastici-

ties from the literature. We find that the resulting MWTP for air quality improvements is

at least 12 percent larger than the estimate produced based on price capitalization alone.

We show that the canonical hedonic price coefficient will tend to underestimate the value

of amenity improvements in the presence of a quantity margin, with the resulting bias

more severe in more elastic-supply settings.

A key limitation of the analysis presented in this paper is that we do not account

for heterogeneity in preferences for cleaner air. If individuals with a higher MWTP for

air quality select into more inelastic-supply cities, then some of the heterogeneity in the

price effects could be explained by taste-based sorting. Nevertheless, we show that price

effects should conceptually be larger in places with relatively inelastic housing supply,

independent of self-selection. We provide reduced-form evidence consistent with this

prediction using a variety of specifications. In addition, our critique of the canonical he-

donic approach is limited to situations in which housing supply is not explicitly fixed

and those in which researchers cannot plausibly take advantage of extremely short-run

price responses to amenity changes. Housing supply may indeed be fixed, or perfectly

inelastic, under very immediate time horizons. However, in many general equilibrium,

elastic-supply contexts, the hedonic approach may continue to be an attractive technique

for evaluating the benefits of amenity improvements. For these cases, we provide a simple

framework that allows researchers to estimate willingness to pay for amenity improve-
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ments, accounting for variations in housing supply elasticity across space.
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Supplemental Appendix

Supplemental appendix material for “Where Does Air Quality Matter? New Evidence

from the Housing Market” by Eleanor Krause and Tridevi Chakma

A Event-study first stage

Following Currie et al. (2023), we estimate the following event-study specification to fur-

ther interrogate the first-stage relationship between nonattainment status and tract-level

PM2.5 concentrations:

PMjct =
2010∑

t=2000

βt (1[Nonattainc = 1]× 1[yeart = t]) + ϕc + ρt + ϵjct (13)

where PMjct is the average PM2.5 concentration in tract j in county c in year t, regressed

on a series of interaction terms for whether the tract is in a newly designated nonattain-

ment county 1[Nonattainc] = 1 interacted with a dummy for each year before and after

the regulation went into place (2005). Regressions include county fixed effects ϕc and

year fixed effects ρt, and standard errors are clustered by county. Figure A1 displays the

coefficient estimates, showing statistically indetectable differences in pollution changes

across tracts in attainment versus nonattainment areas in the years prior to the 2005 reg-

ulation took effect. These trends are quite similar to those in Currie et al. (2023), who use

pollution data from Di et al. (2016) and estimate differences in individual-level pollution

exposure using administrative data.

B Pre-trends and alternative weighting schemes

While we do not observe significant differences in 2000-level covariates between tracts in

nonattainment and attainment areas, we note nonattainment tracts were growing more

slowly in terms of population and price changes in the years leading up to our empiri-

cal setting. These characteristics are presented in Columns 1-3 of Table B1. We consider
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Figure A1: First-stage effect of nonattainment status on PM2.5 concentrations (Event-
study)

Notes: Figure plots the event-study coefficients from equation 13, where the outcome is the Census tract’s
average annual PM2.5 concentrations (µg/m3), based on estimates from van Donkelaar et al. (2019). The
regression controls for county and year fixed effects. 95-percent confidence intervals are reflected by dashed
lines. Errors are clustered by county.

the 1990-2000 change in log population and the 1995 HPI (where 2000=100) as the pri-

mary indicators of possible pre-trends.1 Because the HPI is indexed to 2000-level prices,

a higher value in 1995 reflects less price appreciation between 1995 and 2000. Thus, Table

B1 indicates that nonattainment tracts experienced slower population and price growth

than nonattainment tracts prior to 2000. If nonattainment tracts would have grown more

slowly over the 2000–2010 period in the absence of regulation-induced pollution reduc-

tions, our primary IV strategy would provide a lower bound estimate on the change in

prices and quantities attributable to the regulation.

The central goal of our primary empirical analysis is not to identify the causal effect

of regulation-induced pollution reductions on housing prices and population counts, but

rather to elucidate how price and quantity changes differ across markets with different

supply elasticities. However, in this section, we show that the baseline estimates of the

1We consider the 1995 HPI rather than the 1990 HPI because a large share of tracts (37%) have missing
values for 1990. Still, we lose some observations by considering the 1995 value (8.5% of tracts have missing
1995 values).

2



Table B1: Nonattainment and attainment tract characteristics

(1) (2) (3) (4) (5) (6)
Unweighted PSM-weighted

Attain. Non. (1)-(2) Attain. Non. (4)-(5)

2000-level covariates
ln(med. hh income) 10.867 10.895 -0.028 10.866 10.905 -0.039

(0.015) (0.027) (0.012) (0.028)
adult college share 31.323 30.276 1.047 31.332 30.654 0.678

(0.712) (1.397) (0.695) (1.455)
non-Hispanic white share 75.507 70.572 4.935 78.302 70.738 7.563

(1.705) (5.165) (1.523) (5.302)
renter-occupied housing rate 27.666 27.691 -0.024 26.575 27.466 -0.891

(0.646) (1.942) (0.510) (1.969)
vacancy rate 5.330 4.502 0.829** 5.208 4.379 0.829**

(0.215) (0.269) (0.185) (0.262)
Other characteristics
1995 HPI 78.215 81.425 -3.210*** 81.541 81.425 0.116

(0.980) (0.752) (0.732) (0.752)
∆ln(population), ’90-2000 30.746 18.303 12.442*** 18.884 18.077 0.806

(2.801) (2.084) (1.148) (2.083)
PM2.5 concentration, 2000 11.051 15.434 -4.383*** 11.075 15.455 -4.381***

(0.171) (0.558) (0.181) (0.575)

Observations 14,107 11,736 11,263 11,144

Sample in columns 1-3 includes all metro tracts with non-missing values for HPI and elasticity. Sample in
columns 4-6 includes all metro tracts with non-missing values for HPI and elasticity with positive weights
produced by PSM. Means in columns 4-6 are weighted by these PSM weights. Standard errors, clustered by
county, are in parentheses. Non. refers to nonattainment tracts, based on whether the tract was in an area
designated as nonattainment under the 1997 NAAQS standards, which went into effect in 2005. 2000-level
covariates are retrieved from the U.S. Census. HPI is retrieved from the FHFA and is indexed to 2000 levels
(2000=100).
*** p<0.01, ** p<0.05, * p<0.1

price and quantity effects of regulation-induced PM2.5 declines are robust to alternative

weighting schemes in which we explicitly match attainment and nonattainment tracts

based on pre-period price and quantity changes.

First, we estimate each attainment tract’s propensity score for treatment (i.e., receiv-

ing nonattainment status) based on the 1995 HPI and the 1990-2000 change in log pop-

ulation. We use these outcome changes because they precede the long-difference (2000–

2010) setting. The 1995 HPI is again indexed to 2000 levels, such that it represents the

price change from 1995–2000. We use the 1995 HPI rather than the 1990 value, as the
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1990 value is missing for a large share (37%) of tracts in our primary sample.2 The 1990

population estimates are retrieved from the U.S. Census. We do this propensity score

matching (PSM) using the four nearest neighbors to treatment (nonattainment) tracts and

then weight the observations using the weights generated in this matching process. We

impose common support by dropping treatment observations whose propensity score is

higher than the maximum or less than the minimum propensity score of the control group

(attainment) observations. This yields a slightly smaller sample than that used in our pri-

mary analysis, as tracts that perform as poor matches to the treatment group are dropped

from the analysis. Weighting observations by the weights produced in this PSM process

mollifies the differential pre-trends observed earlier, as seen in Columns 4-6 of Table B1.

Because we are primarily interested in housing price capitalization, the second and

third weighting strategies focus on differential housing price trends across nonattainment

and attainment tracts. In the second strategy, we employ a similar method as the first, but

match attainment and nonattainment tracts on only 1995 HPI, again imposing common

support by dropping treatment observations whose propensity score is higher than the

maximum or less than the minimum propensity score of the control group (attainment)

observations. Finally, we note that housing prices grew dramatically and heterogeneously

across the United States in the run-up to the Great Recession and associated housing cri-

sis. Nonattainment status was announced in December of 2004, and thus it may be more

appropriate to address potentially heterogeneous housing price trends in the years im-

mediately preceding nonattainment designation. Thus, in the third weighting strategy,

we match attainment and nonattainment tracts based on their 2005 HPI, where 2000 is

still this base year. This amounts to matching tracts based on their 2000–2005 price ap-

preciation. We again impose common support. In all strategies, we match control and

treatment observations using the four nearest neighbors, although the conclusions are

relatively insensitive to the precise matching strategy used.

2The 1995 HPI is also missing for many tracts in our primary sample, although the share is much smaller
(8.5%). This process will drop all tracts with missing 1995 values.
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The identifying assumption is that nonattainment tracts and their propensity-matched

attainment tracts would have experienced the same changes in prices (or prices and pop-

ulations) over time in the absence of the regulation. While impossible to test this counter-

factual explicitly, weighting observations such that nonattainment and attainment tracts

have common pre-trends in these outcomes attenuates concerns that the observed “ef-

fect” of regulatory-induced pollution declines is driven by differential trajectories. The

strategy outlined here is similar to that in Sager and Singer (2022), who demonstrate how

failing to match control (attainment) and treatment (nonattainment) tracts on the pre-

period outcomes of interest can substantially alter the coefficient estimates when using

NAAQS nonattainment status as an instrument for changes in PM2.5 concentrations.3

Table B2 shows the point estimates of β1 in equation 1 describing the relationship

between NAAQS-induced changes in tract-level PM2.5 concentrations and price and pop-

ulation changes over the 2000 to 2010 period, using the alternative weighting schemes

described in this section. As before, we instrument for the change in PM2.5 with NAAQS

nonattainment status announced in December 2004. In columns 1 and 2, we reproduce

the central estimates (without weighting) from Table 3. In columns 3 through 8 of Ta-

ble B2, we weight by the weights produced in PSM, described above. Columns 3 and 4

match on 1995 HPI and 1990-2000 population changes. Columns 5 and 6 match on 1995

HPI only, and columns 7 and 8 match on 2005 HPI.

The point estimates in odd-numbered columns reflect the price effect, and the point

estimates in even-numbered columns reflect the population effect, of regulation-induced

changes in PM2.5 concentrations using these different weighting schemes. The price cap-

italization is quite similar across these various strategies, while population changes re-

main small and statistically insignificant across specifications. We also note that using

3Sager and Singer (2022) are primarily interested in the effect of nonattainment status on subsequent
changes in PM2.5 concentrations, and thus match on pre-treatment levels of PM2.5. They show how this
yields a smaller estimated effect of nonattainment status on subsequent pollution, but a larger estimated
effect of nonattainment on housing prices. Given that we are primarily interested in changes in housing
prices and population counts as outcomes, the matching strategy we outline here better addresses the con-
cerns related to differential counterfactual trends between nonattainment and attainment tracts.
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Table B2: Price and population responses to ∆PM2.5, 2000-2010 (alternative weighting
schemes)

(1) (2) (3) (4) (5) (6) (7) (8)
2010 HPI ∆ln(pop)’00-10 2010 HPI ∆ln(pop)’00-10 2010 HPI ∆ln(pop)’00-10 2010 HPI ∆ln(pop)’00-10

∆ PM2.5, 2000-10 -5.843** -0.051 -4.964* 0.136 -6.238** 0.594 -5.285* -0.662
(2.750) (0.818) (2.779) (0.759) (2.697) (0.813) (2.734) (0.794)

Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Division FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weight none none ’95 HPI &
∆ln(pop)’90-00

’95 HPI &
∆ln(pop)’90-00 ’95 HPI ’95 HPI ’05 HPI ’05 HPI

Observations 25,843 25,843 22,407 22,407 20,835 20,835 23,714 23,714

Standard errors, in parentheses, are clustered on county. Controls include the share of the tract population
that is non-Hispanic white, the share of adults with a college degree, median household income, the share
of housing units that are occupied, and the share of occupied housing units that are renter-occupied. We
instrument for change in PM2.5 with NAAQS nonattainment status, as described in text. The outcome
variable in columns 2, 4, 6, and 8 has been multiplied by 100 for ease of interpretation. In columns 3
through 8, we weight observations by the weights produced in PSM, where we match nonattainment and
attainment tracts on the variables indicated in the “weight” row using the 4 nearest neighbors and imposing
common support.
*** p<0.01, ** p<0.05, * p<0.1

these alternative weighting schemes to estimate equation 2 produces similar results as

those in Figure 4. The conclusion that housing prices are more sensitive to air quality

improvements in markets characterized by relatively inelastic housing supply, and that

population sizes respond more in elastic-supply locations, is largely insensitive to the

choice of empirical specification or definition of local housing supply elasticity. That is,

housing prices do less to “capitalize” pollution declines in more elastic markets, where

population changes are the more relevant margin of adjustment to demand shifts.

C Short- and long-run impacts of air quality improvements on housing prices

A housing market may be relatively inelastic if there exist substantial geographical or

regulatory barriers to construction, but it may also be relatively inelastic over shorter

time horizons, as housing units cannot be built in the very short run. Thus, we expect

that the price capitalization of air quality improvements will be larger in the short run,

and relatively more attenuated in the long run. Indeed, we find that the housing price

effects of NAAQS-induced declines in PM2.5 concentrations are larger in magnitude in
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Table C3: Price capitalization of air quality improvements over time

(1) (2) (3) (4)
HPI in year X (2000=100)

X=2008 2010 2013 2016

∆ PM2.5, 2000-X -6.301** -5.843** -3.964** -2.657
(2.690) (2.750) (1.688) (2.454)

Controls ✓ ✓ ✓ ✓
Division FE ✓ ✓ ✓ ✓
Observations 25,749 25,843 25,669 24,855

Standard errors, in parentheses, are clustered by county. Controls include the share of the tract population
that is non-Hispanic white, the share of adults with a college degree, median household income, the share
of housing units that are occupied, and the share of occupied housing units that are renter-occupied. We
instrument for change in PM2.5 between 2000 and the year indicated (X) with NAAQS nonattainment status,
as described in text.
*** p<0.01, ** p<0.05, * p<0.1

the short run (2000–2008) and smaller in the longer run (2000–2013 and 2000–2016).

Table C3 presents the point estimates capturing the effect of the regulation-induced

change in average annual PM2.5 concentrations on tract-level price changes over different

long-difference periods. In each column, we instrument for the change in average annual

PM2.5 concentrations between 2000 and the year indicated with nonattainment status.

The outcome variable is defined as the HPI in the year indicated, relative to 2000 levels.

Thus, column 1 shows the price capitalization between 2000 and 2008, column 2 shows

the price capitalization between 2000 and 2010 (our primary setting), column 3 shows the

price capitalization between 2000 and 2013, and column 4 shows the price capitalization

between 2000 and 2016.4 The specification used to produce the estimates is identical to

our central analysis, but the primary independent variable and outcome variable are ad-

justed to reflect the relevant time horizon. The price effect of regulation-induced pollution

reductions becomes increasingly attenuated over time.

Consistent with basic economic theory, in very short-run settings, prices appear more

responsive to demand shifts. A 1-µg/m3 regulation-induced decline in average annual

4We select 2008 as our ”short-run” setting because states were given a three-year window to develop
plans to reduce PM2.5 concentrations in nonattainment areas following implementation in 2005.
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PM2.5 concentrations yields about a 6.3 percent increase in housing prices between 2000

and 2008, which declines to a statistically indistinguishable 2.7 percent increase in hous-

ing prices between 2000 and 2016. This provides additional suggestive evidence that

the elasticity of the local housing market matters for price capitalization: Even hous-

ing markets characterized by substantial legal or geographical constraints to construction

are not perfectly inelastic over longer time horizons. In these settings, the MWTP esti-

mated based on price capitalization alone could be biased to the extent that it does not

incorporate the quantity margin. Over progressively longer time horizons, we expect the

magnitude of this bias to grow. In circumstances in which researchers evaluate relatively

immediate price changes in response to amenity improvements, there will be little result-

ing bias in using price changes to estimate MWTP.5

5Depending on the empirical setting, estimating very short-run price changes may be more or less fea-
sible. In this setting, the standards were not implemented until 2005, and states were given a three-year
window under which to develop plans to reduce PM2.5 concentrations in nonattainment areas. Ambient
air quality changes in a relatively gradual manner, and may or may not be immediately salient, such that
studying extremely short-run price responses (i.e., when housing supply is perfectly inelastic) is typically
infeasible.
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